Skip to content

Ambition gap

What is Pakistanʼs pathway to limit global warming to 1.5°C?

1.5°C compatible pathways

The Government of Pakistan indicated in its initial NDC to expect an “exponential increase of GHG emissions” likely to occur for several decades after 2016 “before any decrease in emissions” would be realised.22 The government’s thinking seems not to have changed as the same baseline trajectory, which leads to a 2030 emissions level of 1603 MtCO₂e, is again used in the country’s updated NDC. This 300% increase in emissions from 2015 to 2030 predicted by the baseline scenario is intrinsically tied to the government’s economic target of 7-9% GDP growth per year.2,22,64

Pakistan’s updated NDC targets unconditional emissions reductions of 15% below BAU, and a further conditional reduction of 35%, both including LULUCF.2 When excluding LULUCF, the overall 2030 target (50% reduction) comes to a range between 787-838 MtCO₂e/yr, or an increase of 87-99% above 2015 levels.

International support will be needed to help the country implement a 1.5°C compatible domestic emissions pathway which requires a reduction of 37-46% below 2015 levels by 2030 (or 263-225 MtCO₂e/yr in 2030), while meeting the growing energy demand.

The flow of climate finance to the country since the announcement of its initial NDC in 2016 has been much lower than expected.23,24 That document set a conditional target of 20% dependent on international climate funding of 40 billion USD. While the updated NDC does not specify an exact value for the international financial support required to meet the new conditional target, the document sates that the cost of the country’s energy transition will require 101 billion USD by 2030 and an additional 65 billion USD by 2040.2

Long term pathway

Long-term 1.5°C compatible pathways indicate that Pakistan could reach CO₂ emissions reductions of 90-95% in 2050 compared to 2015 levels. GHG emissions see a decrease relative to 2015 levels by 66-67% in 2050 or reaching a level of 137-142 MtCO₂e/yr excluding LULUCF by 2050.49

Recent analysis of Pakistan’s land use and forestry sectors indicates that these have been a historic source of GHG emissions, and furthermore, this has increased at a compound annual rate of around 3.3% between 1994 and 2017.34,69 Pakistan will need to implement stringent policies to reduce its forestry emissions and further contribute to negative emissions. In addition, international support will need to be provided for technological carbon dioxide removal approaches such as bioenergy with carbon capture and storage (BECCS) or direct air capture and storage (DAC).

1 Mir, K. A., Park, C., Purohit, P. & Kim, S. Comparative analysis of greenhouse gas emission inventory for Pakistan: Part I energy and industrial processes and product use. Adv. Clim. Chang. Res. 11, 40–51 (2020).

2 The Government of Pakistan. Pakistan: Updated Nationally Determined Contributions 2021. (2021).

3 Isaad, H. Opinion: Is Pakistan really phasing out coal? The Third Pole (2021).

4 Ebrahim, Z. China’s coal exit will not end Pakistan’s reliance on dirty fuel. The Third Pole (2021).

5 NTDC. Indicative Generation Capacity Expansion Plan (IGCEP) 2021-30. (2021).

6 The Government of Pakistan & UNDP. National Action Plan. Sustainable Energy for All. (2019).

7 Mir, K. A., Purohit, P. & Mehmood, S. Sectoral assessment of greenhouse gas emissions in Pakistan. Environ. Sci. Pollut. Res. 24, (2017).

8 Ijaz, M. & Goheer, M. A. Emission profile of Pakistan’s agriculture: past trends and future projections. Environ. Dev. Sustain. 23, 1668–1687 (2021).

9 Chaudhry, Q. U. Z. Climate Change Profile of Pakistan. (2017).

10 Shaikh, N. A. Agriculture sector: A declining performance. Pakistan and Gulf Economist (2019).

11 Khan, M. A. et al. Economic effects of climate change-induced loss of agricultural production by 2050: A case study of Pakistan. Sustain. 12, 1–17 (2020).

12 IRENA. Energy Profile – Pakistan. (2021).

13 Bhutto, A. W., Bazmi, A. A. & Zahedi, G. Greener energy: Issues and challenges for Pakistan – Biomass energy prospective. Renewable and Sustainable Energy Reviews vol. 15 (2011).

14 NERPA. State of Industry 2021. (2021).

15 Iqbal, A. Pakistan will shift to 60pc clean energy by 2030, world assured. Dawn (2021).

16 The Government of Pakistan. Alternative and Renewable Energy Policy 2019. (2019).

17 The Government of Pakistan. Barrier Analysis and Enabling Framework for Climate Change Mitigation Technologies.(2016).

18 NEECA. Strategic Plan 2021-2023. https://neeca.gov.pk/TopStoryDetail (2020).

19 Ministry of Climate Change. National Electric Vehicle Policy. (2019).

20 Euro-V standards for fuels approved. The News International (2020).

21 Ministry of Climate Change. Ten Billion Trees Tsunami Programme – Phase-I Up-scaling of Green Pakistan Programme (Revised). (2019).

22 The Government of Pakistan. Pakistan’s Intended Nationally Determined Contribution (PAK-INDC). (2015).

23 Zahid, M. & Abedullah Anjum. Pakistan’s options for climate finance. The News International (2020).

24 Abbasi, K. Pakistan left out of $100 bn finance despite efforts to protect climate. The News International (2021).

25 Hutfilter, U. F. et al. Decarbonising South and South East Asia – Country Profile – Pakistan. (2019).

26 Khan, M. K., Khan, M. I. & Rehan, M. The relationship between energy consumption, economic growth and carbon dioxide emissions in Pakistan. Financ. Innov. 6, 1–13 (2020).

27 Lin, B. & Raza, M. Y. Analysis of energy related CO2 emissions in Pakistan. J. Clean. Prod. 219, 981–993 (2019).

28 Uddin, M. Pakistan’s National Electric Vehicle Policy: Charging towards the future. ICCT (2020).

29 CPEC Authority. Energy Projects under CPEC. (2021).

30 Majid, A. How cleantech can help power Pakistan’s green revolution. World Economic Fourm (2019).

31 Rahut, D. B., Ali, A., Mottaleb, K. A. & Aryal, J. P. Wealth, education and cooking-fuel choices among rural households in Pakistan. Energy Strateg. Rev. 24, 236–243 (2019).

32 WHO. Health benefits of raising ambition in Pakistan’s nationally determined contribution: WHO technical report. (2021).

33 Nicholas, S. Pakistan Risks Locking in Long-Term Overcapacity and Expensive Power. (2020).

34 Mir, K. A., Park, C., Purohit, P. & Kim, S. Comparative analysis of greenhouse gas emission inventory for Pakistan: Part II agriculture, forestry and other land use and waste. Adv. Clim. Chang. Res. 12, 132–144 (2021).

35 Malik, S., Qasim, M. & Saeed, H. Green Finance in Pakistan: Barriers and Solutions. (2018).

36 Khan, M. B. Alternative energy policy 2019 at a glance. The Nation (2020).

37 Qasim, M. Pakistan leapfrogging to a green energy future. East Asia Forum (2020).

38 Nicholas, S. There’s No Second Life for Coal in Pakistan. (2021).

39 PACRA. Power Generation – An Overview. (2021).

40 Eckstein, D., Künzel, V. & Schäfer, L. Global climate risk index 2021. Who suffers most from extreme weather events? (2021).

41 Chandio, A. A., Rauf, A., Jiang, Y., Ozturk, I. & Ahmad, F. Cointegration and causality analysis of dynamic linkage between industrial energy consumption and economic growth in Pakistan. Sustain. 11, (2019).

42 EIA. Pakistan – Analysis. (2016).

43 Charles, M. et al. Electrification of Pakistan’s Transport System – Modeling EV Penetration and Energy Supply Chain Impacts. (2021).

44 Hunt, J. D. et al. Hydropower and seasonal pumped hydropower storage in the Indus basin:pros and cons. J. Energy Storage 41, (2021).

45 Khan, M. I. Comparative Well-to-Tank energy use and greenhouse gas assessment of natural gas as a transportation fuel in Pakistan. Energy Sustain. Dev. 43, 38–59 (2018).

46 Smit, R., Whitehead, J. & Washington, S. Where Are We Heading With Electric Vehicles? Air Qual. Clim. Chang. 52, 18–27 (2018).

47 Note that the absolute values have been converted from SAR, as they appear in the NDC, to AR4.

48 Pakistan’s baseline projections for 2030 emissions, as stated in their NDC, assumes an emissions growth rate of about 9.6% p.a. This would be a significant increase from the average annual rate of around 3% during years 2000 to 2015. Furthermore, as the projected emissions growth is larger than the government’s forecast GDP growth rate of 7-9% p.a., emissions intensity (excl. LULUCF) would grow at a compound annual rate between 2.6% (for higher GDP growth) to 2.7% (for lower GDP growth) in the period 2015 and 2030, in contrast to the 1% average annual decrease seen between 2000 and 2015.

49 Global cost-effective pathways assessed by the IPCC Special Report 1.5°C tend to include fossil fuel use well beyond the time at which these could be phased out, compared to what is understood from bottom-up approaches, and often rely on rather conservative assumptions in the development of renewable energy technologies. This tends to result in greater reliance on technological CDR than if a faster transition to renewables were achieved. The scenarios available at the time of this analysis focus particularly on BECCS as a net-negative emission technology, and our downscaling methods do not yet take national BECCS potentials into account.

50 Current values for renewable energy’s share in the power mix refer to 2020-21 and are taken from Table 7 of NERPA’s 2021 State of Industry report. Note that hydroelectricity alone makes up a 27% share of generation.

51 Previous studies have shown that with planned and announced coal capacity, Pakistan’s emissions due to coal fired power plants would likely peak in 2055 and phase out in 2061. This being far above what was shown to be needed at a regional level: coal phase out from power by 2040 in South and South East Asia to be compatible with the Paris Agreement.

52 This assumes that emissions intensities of Pakistan’s five main sectors (energy, agriculture, industrial processes, waste, and LULUCF) remain essentially unchanged from the levels seen during 1994-2008.

53 This is emissions excluding LULUCF. The 2017 study has LULUCF contributing a small source of emissions, around 3% of total in 2008, 2% in 2020, and less than 1% in 20509. This does not effect the overall result.

54 Pakistan’s baseline projections, broken down by sector, are included in Table 7 of the INDC, which has total emissions in 2030 reaching 1603 MtCO₂e. Although the updated NDC does not include the sectoral breakdown of the baseline projections, the total emissions in 2030 remain the same, as shown in Figure 1.1 of that report. Please see the country’s NDC page on the UNFCCC website.

55 Emissions intensity is derived from data taken from the PRIMAP database (emissions) and World Bank (GDP). Agriculture’s share in GDP is taken from the Pakistan Bureau of Statistics.

56 See Table 2 in NERPA’s 2021 State of Industry report.

57 In their initial NDC, the Government of Pakistan stated that “The Vision 2025 document of the Government of Pakistan sets a target of average GDP growth rate of 7 percent until the year 2025, which has been used for the extended period until 2030. Further incremental growth rate due to CPEC investments, infrastructure development and increasing energy demand has been adequately incorporated.” The updated NDC claims that the 2030 GHG emissions level of 1574 MtCO₂e (excl. LULUCF) under baseline projections is based on a 9% annual GDP growth rate during that period and appears to imply that “economic impacts of China Pakistan Economic Corridor (CPEC), and sectoral growth rates” are in addition to the 9% rate. Our analysis, based on average historical emissions intensities for each economic sector, indicates that an annual GDP growth rate in the range of 7-9% between 2015-30 would lead to 2030 GHG emissions (excl. LULUCF) in the range of 1255-1657 MtCO₂e. It is also important to note that the Pakistani government’s 7-9% annual GDP growth objective is taken to commence from 2015. Although the years 2016-2018 saw higher than average GDP rates (~5.6%) this was followed by a 1% growth rate in 2019. In any case, 7% has, so far, not been achieved.

58 Coal usage in thermal power generation increased from a 0.56% share in 2015-16 to 32.96% in 2019-20 in terms of tonnes of oil equivalent supply. This has been concurrent with a decrease in furnace oil’s share in thermal power generation. Note that thermal power generation accounted for 60% of total generation in 2019-20.14

59 In their 2021 World Energy Balance, the IEA reports that Pakistan had a 33% share of biomass (including traditional biomass) in 2019. This figure does not appear in statistical reporting from the Government of Pakistan due to different accounting methodologies. Given Pakistan’s large rural population and low levels of access to clean cooking, the use of traditional biomass is likely substantial. Nonetheless, the share of traditional biomass estimated by the IEA is indicative and should be treated with caution.

60 In 2018, 73% of the population had access to electricity.12

61 Pakistan’s NDC, including both conditional and unconditional commitments, is 50% below business as usual (BAU) levels by 2030 (including LULUCF). The NDC includes a GHG inventory showing that 2018 emissions stood at 490 MtCO₂e. Pakistan estimates that 2030 emissions under BAU will be 1603 MtCO2e/yr including LULUCF, or a 227% increase from 2018 levels. Their overall Nationally Determined Contribution (NDC) translates to an emissions level of 802 MtCO₂e/yr, including LULUCF, or 64% above 2018 levels. The country’s unconditional target (15%) alone would translate to 2030 emissions levels of 1363 MtCO₂e/yr, including LULUCF (178% above 2018 levels). This may be compared to the previously submitted INDC conditional 20% target which translated to 2030 emissions levels 1282 MtCO₂e/yr including LULUCF (162% above 2018 levels).

62 Pakistan’s baseline emissions projections in their updated NDC appear to be unchanged from that given in the INDC: 1603 MtCO₂e/yr including LULUCF. While the updated NDC only provides the aggregated emissions value, the INDC gives a sectoral breakdown. We assume here that, like the aggregate, the sectoral composition of the baseline emissions has remained the same for the updated NDC. Importantly, we assume that baseline projections for 2030 LULUCF sector are unchanged.We estimate emissions levels under a BAU that excludes LULUCF to be 1574 MtCO2₂e/yr by 2030. Pakistan’s NDC does not specify the Global Warming Potential (GWP) used, however, an additional study indicates that it uses GWPs from the IPCC Second Assessment Report (SAR).1 The analysis provided here is based on GWPs from the 4th assessment report (AR4), thus for comparability and consistency purposes, we provide a range in estimating Pakistan’s 2030 unconditional and conditional updated NDC targets. The lower bound is based on applying a 50% reduction (or 15% and 35% for unconditional and conditional targets respectively) to the stated 2030 BAU level excluding LULUCF, leading to emissions levels of 787 MtCO₂e/yr (or 1338 and 1023 MtCO₂e/yr for unconditional and conditional targets respectively) excluding LULUCF, by 2030. The NDC states that 2018 LULUCF emissions were 24.86 MtCO₂e. Thus, total emissions excluding LULUCF in 2018 were 465 MtCO₂e. Thus, in relative terms, the NDC reduction targets, excluding LULUCF, would be 69% increase over 2018 levels overall, and 188% and 120% increases from 2018 level for unconditional and conditional targets respectively. For the higher bound, we converted the 2030 baseline projection, excluding LULUCF, by scaling according to the ratio between SAR and AR4 historical emissions as provided in the PRIMAP-Hist dataset. This conversion factor is consistently around 0.94 SAR/AR4 in the years covered by the PRIMAP dataset. We thus arrive at a 2030 overall NDC target emissions level of 838 MtCO₂e/yr excluding LULUCF (or 1425 and 1089 MtCO₂e/yr for unconditional and conditional targets respectively). Using AR4 GWP, 2018 emissions levels, excluding LULUCF were 513 MtCO₂e. Thus, in relative terms, the NDC target, excluding LULUCF, would constitute a 63% increase over 2018 levels (178% and 112% for unconditional and conditional targets respectively)

63 According to Pakistan’s updated NDC, as of March 2020, only 75 MW of solar capacity had been approved under the program. This is far less than what the target is suggesting.

64 The Government’s updated NDC shows that 2018 emissions total emissions levels were 8.7% less than that predicted in the initial NDC. Interestingly, while this does appear to be the case for the energy, agricultural, and industrial process sectors, emissions from waste and land use change have exceeded predicted levels.

65 According to data from the World Bank, Pakistan’s population grew by 2.05% between 2018-2019 and this rate has been slowly decreasing in the decade prior.

66 This 12.6 GW of capacity includes the 5.5 GW already completed (of which coal makes up 84%) and the 7.1 GW under construction and consideration (of which coal makes up 51%).

67 The 1.5°C national pathway explorer takes primary energy values and shares from the IEA’s World Energy Balances. NERPA publishes statistics on Total Primary Energy supply and consumption in its 2021 State of the Industry. That source has fossil fuel’s share in 2019-20 as 75%. Variations in the values from the two sources are due to methodological differences such as IEA excluding trade in heat and electricity.

68 The latest Indicative Generation Capacity Expansion Plan has coal (imported and local) contributing 19% of power generation in 2030, more than wind and solar combined (14%).5

69 The referenced study shows that emissions from “forestry and other land use” amounted to 10.08 MtCO₂e in 2015, which is consistent with Pakistan’s NDC (as are the emissions values for other years given in the study). Applying the compound annual growth rate of 3.3% to 2015 values leads to an estimated 16.96 MtCO₂e of LULUCF emissions in 2030, less than the 29 MtCO₂e given in the NDC baseline.

70 Renewables covered by the policy include solar, wind, geothermal, and biomass, as well as alternative technologies like biogas, syngas, waste to energy, energy storage systems, ocean/tidal waves, and hybrids thereof.

71 However, analysts have pointed out that Pakistan’s latest Indicative Generation Capacity Expansion Plan has hydro generating 47% of the country’s power in 2030 while wind and solar produce a combined 14%. This mix is seeming in violation of the Alternative and Renewable Energy Policy targets.4

72 Several studies have investigated climate change effects on water flow variability in the Indus basin. A recent article suggests that this area has the highest potential for low-cost seasonal pumped hydro storage in the world.44

73 To be sure, a shift away from biomass to electricity in the building sector could, given the current energy structure of the power sector, potentially and substantially increase the emissions intensity of buildings. Note that emissions intensity of the power sector, around 350 gCO₂/kWh in 2019, is almost ten times as great as that of buildings, around 39 gCO₂/kWh in the same year.

74 Pakistan’s updated NDC notes that 2018 marked an end to the high economic growth which drove increased cement production. Carbon intensity of industrial energy consumption (gCO₂/MJ), which began increasing in 2013, seems to have peaked in 2018. See the IEA’s country profile for further details.

75 Interestingly, recent studies have shown that in the long run, consumption of oil in the industrial sector negatively impacts GDP while electricity consumption positively impacts GDP.41

76 See the IEA’s country profile for further details on historical consumption of coal and total energy supply generally.

77 Interestingly, a recent study has shown that indigenous natural gas based fuels have larger wheel to tank emissions than fuels produced from indigenous crude oil.45

78 The 1.5°C scenarios where hydrogen features most heavily are also those where energy consumption increases the most. This may be due to hydrogen fuel cell electric vehicles being deployed in heavy transport. A recent report has found that hydrogen fuel cell vehicles use substantially more kWh/km compared to electric vehicles.46

79 This assumes a generation mix in line with that projected under the recently released Indicative Generation Capacity Expansion Plan. The plan foresees coal accounting for 21% of 2030 generation mix.5 In contrast, the 1.5°C compatible pathways have coal being phased out of power by 2029. Note also that the median of the pathways has the transportation sector consuming around 4,700 GWh of electricity in 2030.

Methodology

Pakistanʼs total GHG emissions

excl. LULUCF MtCO₂e/yr

Displayed values
Reference year
−100%−50%0%50%100%19902010203020502070
Reference year
2015
1.5°C emissions level
−37%
NDC (conditional)
+89%
Ambition gap
−126%
  • 1.5°C compatible pathways
  • Middle of the 1.5°C compatible range
  • Current policy projections
  • 1.5°C emissions range
  • Historical emissions
2030 emissions levels
NDC (conditional)
1.5°C emissions level
Ref. year 2015
416MtCO₂e/yr

Energy system transformation

Pakistan’s per capita CO₂ emissions (excluding LULUCF) have risen from 0.78 to 0.92 tCO₂ per capita between 2000 and 2016.25 While this is low compared to the world average of 4.8 tCO₂ per capita (in 2016), the government’s current baseline projections have emissions growing at 9.6% p.a. out to 2030. With an expected population growth rate of 2% p.a. over this period, the country’s per capita emissions would more than double by 2030.65

Studies suggest that economic growth has been a major driver of Pakistan’s energy-related carbon emissions.26,27 A switch from fossil fuel to renewable based energy and the development of indigenous clean technology industries, such as the burgeoning electric vehicle industry, could help to both reduce energy-related emissions and drive economic development.28

The China Pakistan Economic Corridor, which the government cites as a major driver of GDP growth, currently has coal-fired power plants making up 65% of the 12.6 GW of the capacity from energy projects, while hydro makes up 27% and wind and solar make up 8% combined.29,66 This comes despite Prime Minister Khan’s announced moratorium on new coal and pledge for a 60% renewable share in the 2030 energy mix.3,15 Efforts should be made to re-focus investment on renewable technologies, and away from coal, in both energy and related sectors.30

1.5°C compatible pathways indicate that the share of unabated fossil fuels in primary energy, which currently stand at around 62%, should be cut to around 46% by 2040 and reach less than 17% by 2050.67 As is stated in the country’s updated NDC, the government recognizes that off-grid and renewable resources are the least cost preferred option to address ongoing issues of access to energy. Beyond cost, decarbonising the power sector, and meeting increased demand, through the use of renewable energy has significant co-benefits for health and employment.25,31,32

Despite Prime Minister Khan’s recently announced moratorium on new coal, the government’s current plans to expand electricity generation capacity rely heavily on coal-fired power plants, placing the country on a path that risks stranded assets, increases energy dependency and would likely lock in a carbon intensive pathway.3,25,33,68

Methodology

Pakistanʼs primary energy mix

petajoule per year

Scaling
SSP1 Low CDR reliance
20192030204020504 0006 0008 000
SSP1 High CDR reliance
20192030204020504 0006 0008 000
Low Energy Demand
20192030204020504 0006 0008 000
High Energy Demand - Low CDR reliance
20192030204020504 0006 0008 000
  • Negative emissions technologies via BECCS
  • Unabated fossil
  • Renewables incl. Biomass
  • Nuclear and/or fossil with CCS

Pakistanʼs total CO₂ emissions

excl. LULUCF MtCO₂/yr

−100010020030019902010203020502070
  • 1.5°C compatible pathways
  • 1.5°C emissions range
  • Middle of the 1.5°C compatible range
  • Historical emissions

1.5°C compatible emissions benchmarks

Key emissions benchmarks of Paris compatible Pathways for Pakistan. The 1.5°C compatible range is based on the Paris Agreement compatible pathways from the IPCC SR1.5 filtered with sustainability criteria. The median (50th percentile) to 5th percentile and middle of the range are provided here. Relative reductions are provided based on the reference year.

Reference year
Indicator
2015
Reference year
2019
2030
2040
2050
Year of net zero GHG
incl. BECCS excl. LULUCF and novel CDR
Total GHG
Megatonnes CO₂ equivalent per year
416
517
263
225 to 307
179
163 to 208
142
137 to 165
Relative to reference year in %
−37%
−46 to −26%
−57%
−61 to −50%
−66%
−67 to −60%
Total CO₂
MtCO₂/yr
178
251
110
98 to 135
64
22 to 73
17
9 to 45
2063
2054
Relative to reference year in %
−38%
−45 to −24%
−64%
−88 to −59%
−90%
−95 to −75%

Footnotes