What is Senegal's pathway to limit global warming to 1.5°C?
Senegal
Economy wide
With international support, Senegal’s domestic emissions pathway will be implemented to close the gap between its fair share level and domestic emissions level. Senegal’s 1.5°C compatible domestic emissions reduction levels in 2030, would be 0-25% below 2010 levels or 16-22 MtCO₂e/yr (excluding LULUCF).
Senegal's total GHG emissions excl. LULUCF MtCO₂e/yr
*Net zero emissions excl LULUCF is achieved through deployment of BECCS; other novel CDR is not included in these pathways
-
Graph description
The figure shows national 1.5°C compatible emissions pathways. This is presented through a set of illustrative pathways and a 1.5°C compatible range for total GHG emissions excl. LULUCF. The 1.5°C compatible range is based on global cost-effective pathways assessed by the IPCC SR1.5, defined by the 5th-50th percentiles of the distributions of such pathways which achieve the LTTG of the Paris Agreement. We consider one primary net-negative emission technology in our analysis (BECCS) due to data availability. Net negative emissions from the land-sector (LULUCF) and novel CDR technologies are not included in this analysis due to data limitations from the assessed models. Furthermore, in the global cost-effective model pathways we analyse, such negative emissions sources are usually underestimated in developed country regions, with current-generation models relying on land sinks in developing countries.
Methodology
Data References
-
Conditional NDC
Senegal’s 2020 NDC targets a conditional GHG emission reduction of 29.5% below business as usual levels by 2030 (excl. LULUCF), which translates into emissions reductions of 24-59% above 2010 by 2030, or around 28-36 MtCO₂e/yr (excl. LULUCF).1
2050 Ambition
1.5°C compatible pathways show remaining GHG emissions levels of 39% below 2010 levels or around 13 MtCO₂e/yr by 2050 excluding LULUCF, and have close to zero CO₂ emissions left.2
Remaining emissions
On the road to net zero emissions, remaining emissions will need to be balanced by negative emissions from carbon dioxide removal approaches such as those in the land sector. For example, shifting away from traditional biomass use in primary energy will steer emissions reductions in the LULUCF sector by reducing deforestation and sustaining land-based sinks.
Sectors
Power
-
Under 1.5°C compatible pathways, Senegal’s power mix sees a high uptake of renewable energy (including solar, wind, hydro and modern biomass) from a share of 11% in 2017 to 94–97% by 2030, and a sharp reduction of fossil fuels, mostly oil, from 89% in 2017 to 3-5% by 2030.
-
Coal and gas have played a minor role in Senegal’s power mix, and in 1.5°C compatible pathways they rapidly phase out, with a shift to 100% renewables by 2040 at the latest.
-
A zero-emissions power sector is reached by 2035 at the latest, mostly driven by the phase out of oil.3 Transitioning from oil to renewable energy is an opportunity for the country to shift towards a low carbon energy system with additional co-benefits such as job creation and affordable electricity. It is also a major lever to reduce government expenditure on oil imports.4
-
In contrast to Senegal’s plans to start exploiting its oil and gas reserves, a shift to Senegal’s underexploited renewable energy solar potential would prevent locking in a carbon intensive pathway and the risk of stranded assets, in addition to increasing its energy security as Senegal predominately imports oil for energy consumption.5
-
In 2018, traditional biomass (fuelwood and charcoal) accounted for 82% of total residential energy consumption (slightly less than half of Senegal’s total final energy consumption). Promoting electric transportation and cooking technologies that run on clean energy would significantly curb household biomass combustion and reduce fossil fuel usage.
Transport
-
In 2019, transport was the largest emitter within the energy sector in Senegal,6 with road transport responsible for most of the sector’s emissions.7
-
To align with 1.5˚C compatible pathways, the transport sector would need to be fully decarbonised by 2047–2050. This could be achieved through rapid electrification and potentially the use of biofuels, among other fuels. Electricity’s share of the transport energy mix would have to increase to 5–21% by 2030 and to 33–43% by 2050.