Skip to content

Singapore Ambition gap

What is Singaporeʼs pathway to limit global warming to 1.5°C?

1.5°C compatible pathways

Singapore updated its NDC in 2020 without increasing its ambition.4 Singapore’s NDC target is to peak emissions at 65 MtCO₂e in 2030 which would translate in an increase in GHG emissions of 32% above 2015 levels by 2030. Singapore is currently reviewing its NDC.3

A Paris Agreement compatible pathway requires Singapore to reduce emissions by around 61% from 2015 levels or 19 MtCO₂e by 2030 and to peak its emissions almost immediately.

As a city state, Singapore has a limited capacity to rely on LULUCF sector as a carbon sink. However, Singapore can further reduce emissions overseas by providing climate finance support to other countries. A fair share contribution to reduce global greenhouse gas emissions compatible with the Paris Agreement would require Singapore to go further than its domestic target, and provide substantial support for emission reductions to poor countries on top of its domestic reductions.

Long term pathway

Singapore has an emissions target of 32 MtCO₂e by 2050 and plans for net zero emissions in the second half of the century, which is at odds with achieving a 1.5°C pathway. To be 1.5°C compatible the country would need to reach a level of GHG emissions of 0 (-2 to 2) MtCO₂e, or a 100% (97-104%) reduction below 2015 levels by 2050.22,23 Remaining GHG emissions will need to be balanced by negative emissions from carbon dioxide approaches or a fully decarbonised energy system based on renewables. Energy sector emissions would need to peak immediately.

Singapore implemented a carbon tax for industrial facilities of SGD$5/tCO₂e (roughly USD$3.7/tCO₂e) in 2019. The carbon tax will remain at this price until 2023, with plans to increase to SGD$25 per tonne by 2030 and further to SGD$ 50-80 per tonne by 2050.9 This would need to increase substantially in order to reduce emissions to align with a 1.5°C compatible pathway.12

A fair share contribution to international efforts can lead to additional emissions reductions. Singapore can further reduce emissions overseas by providing support to other countries, for example, through climate finance.

1 Singapore government. Singapore’s Update of its First Nationally Determined Contribution (NDC) and Accompanying Information. (2020).

2 Climate Action Tracker. Singapore CAT Climate Target Update Tracker. Climate Action Tracker. (2020).

3 Channel News Asia. Singapore to review its climate change target as world leaders agree COP26 deal. (2021).

4 CAT. CAT Climate Target Update Tracker, Singapore. Climate Action Tracker. (2020).

5 National Environment Agency. Singapore’s Fourth Biennial Update Report. (2020).

6 Lau, H. C. et al. A Decarbonization Roadmap for Singapore and Its Energy Policy Implications. (2021) doi:10.3390/en14206455.

7 EDB: Singapore. Sustainable Jurong Island. 2021.

8 National Climate Change Secretariat. Charting Singapore’s Low-Carbon and Climate Resilient Future. (2020).

9 Strachen, E. & Greening, P. The Singapore Budget 2022 – A Continuing Commitment to Advancing Singapore’s Green Transition – Lexology. (2022).

10 UN Climate Change Conference (COP26). Global Coal to Clean Power Transition Statement. (2021).

11 Duarte, C., Raftery, P. & Schiavon, S. Development of Whole-Building Energy Models for Detailed Energy Insights of a Large Office Building with Green Certification Rating in Singapore. Energy Technol. 6, 84–93 (2018).

12 Climate Action Tracker. Singapore. (2020).

13 Wamsted, D. & Schlissel, D. Petra Nova Mothballing Post-Mortem: Closure of Texas Carbon Capture Plant Is a Warning Sign. (2020).

14 Sun Cable. Sun Cable Website. Sun Cable. (2021).

15 Vidinopoulos, A., Whale, J. & Fuentes Hutfilter, U. Assessing the technical potential of ASEAN countries to achieve 100% renewable energy supply. Sustain. Energy Technol. Assessments 42, 100878 (2020).

16 IEA. Singapore. International Energy Agency. (2021).

17 PIK. The PRIMAP-hist national historical emissions time series. (2021).

18 NCCS. Singapore’s Emissions Profile. (2021).

19 Lewis, J. Shell mulls Singapore carbon capture hub and biofuels plant. (2021).

20 Land Transport Authority. Land Transport Master Plan 2040. (2021).

21 Data excludes Land use, Land use change and forestry (LULUCF) emissions. However, Singapore’s LULUCF emissions account for very little (e.g. 0.1 MtCO₂e/yr in 2014).

22 32 MtCO₂e calculated in AR4 values by the Climate Action Tracker. Source cites 33 MtCO₂e/yr in AR5 GWP values.

23 While global cost-effective pathways assessed by the IPCC Special Report 1.5°C provide useful guidance for an upper-limit of emissions trajectories for developed countries, they underestimate the feasible space for such countries to reach net zero earlier. The current generation of models tend to depend strongly on land-use sinks outside of currently developed countries and include fossil fuel use well beyond the time at which these could be phased out, compared to what is understood from bottom-up approaches. The scientific teams which provide these global pathways constantly improve the technologies represented in their models – and novel CDR technologies are now being included in new studies focused on deep mitigation scenarios meeting the Paris Agreement. A wide assessment database of these new scenarios is not yet available; thus, we rely on available scenarios which focus particularly on BECCS as a net-negative emission technology. Accordingly, we do not yet consider land-sector emissions (LULUCF) and other CDR approaches which developed countries will need to implement in order to counterbalance their remaining emissions and reach net zero GHG are not considered here due to data availability.

Methodology

Singaporeʼs total GHG emissions

excl. LULUCF MtCO₂e/yr

Displayed values
Reference year
−120%−100%−80%−60%−40%−20%0%19902010203020502070
Net zero GHG excl. LULUCF*
2053
Reference year
2015
1.5°C emissions level
−69%
NDC
+8%
Ambition gap
−77%
  • Middle of the 1.5°C compatible range
  • Current policy projections
  • 1.5°C emissions range
  • Historical emissions
2030 emissions levels
Current policy projections
NDC
1.5°C emissions level
Ref. year 2015
60MtCO₂e/yr

Energy system transformation

The power sector will play the largest role in decarbonising the energy mix, particularly as the industry, transport and building sectors become further electrified. Ramping up electrification of these sectors and the inclusion of an ambitious renewable energy target would assist in decarbonising the energy sector. Singapore currently has a solar target of 2 GW to be installed by 2030, and a plan to phase out fossil fuel cars by 2040.

Primary energy consumption is mainly from the industry sector, as its economy heavily relies on its oil refining and petrochemical hub. Singapore has the opportunity to transition its economy away from fossil fuels, for example transitioning to a regional or global green hydrogen hub. Paris Agreement compatible pathways analysed here underestimate the potential for green hydrogen imports in future, which has applications to decarbonise power, industry and transport sectors. As many countries decarbonise their economies, the uptake of renewables and green hydrogen is likely to increase sharply which could be the opportunity for Singapore to transform its economy.

Singapore’s Low Emissions Development Strategy includes considering ‘low carbon’ hydrogen. Importing hydrogen derived from renewables could be explored as an option to further decarbonise the primary energy.

Singapore’s low carbon strategy aims to rely on carbon capture and storage (CCS) as part of its fourth energy switch, despite recognising the technology is limited by economic, institutional and technical constraints.5 There are no operational CCS projects linked to power generation in Southeast Asia, and the technology applied elsewhere is proving costly.13 Renewable energy (including imports) in combination with energy efficiency to reduce energy demand will lower the need for CDR technology.

Methodology

Singaporeʼs primary energy mix

petajoule per year

Scaling
SSP1 Low CDR reliance
20192030204020501 000
SSP1 High CDR reliance
20192030204020501 000
Low energy demand
20192030204020501 000
High energy demand - Low CDR reliance
20192030204020501 000
  • Negative emissions technologies via BECCS
  • Unabated fossil
  • Nuclear and/or fossil with CCS
  • Renewables incl. biomass

Singaporeʼs total CO₂ emissions

excl. LULUCF MtCO₂/yr

−20020406019902010203020502070
  • 1.5°C emissions range
  • Middle of the 1.5°C compatible range
  • Historical emissions

1.5°C compatible emissions benchmarks

Key emissions benchmarks of Paris compatible Pathways for Singapore. The 1.5°C compatible range is based on the Paris Agreement compatible pathways from the IPCC SR1.5 filtered with sustainability criteria. The median (50th percentile) to 5th percentile and middle of the range are provided here. Relative reductions are provided based on the reference year.

Reference year
Indicator
2015
Reference year
2019
2030
2040
2050
Year of net zero
incl. BECCS excl. LULUCF and novel CDR
Total GHG
Megatonnes CO₂ equivalent per year
60
48
19
17 to 22
5
4 to 7
1
−1 to 2
2053
2047 to 2069
Relative to reference year in %
−69%
−71 to −63%
−91%
−93 to −89%
−98%
−102 to −97%
Total CO₂
MtCO₂/yr
58
45
19
18 to 22
6
3 to 9
1
−2 to 3
2054
2045 to 2066
Relative to reference year in %
−68%
−69 to −62%
−90%
−94 to −85%
−99%
−104 to −95%

Footnotes